
Simulating Collaborative Robots in a Massive
Multi-Agent Game Environment

(SCRIMMAGE)

Kevin DeMarco1, Eric Squires2, Michael Day3, and Charles Pippin4

1 Georgia Institute of Technology, Atlanta GA 30332, USA,
kevin.demarco@gtri.gatech.edu,

2 Georgia Institute of Technology, Atlanta GA 30332, USA,
eric.squires@gtri.gatech.edu

3 Georgia Institute of Technology, Atlanta GA 30332, USA,
michael.day@gtri.gatech.edu

4 Georgia Institute of Technology, Atlanta GA 30332, USA,
charles.pippin@gtri.gatech.edu

Abstract. Testing mobile robotic systems in the field is a costly and
risky task. Unfortunately, there is a gap between the existing simula-
tion capabilities and those required to simulate large numbers of aerial
vehicles. Many multi-agent robotics simulators have been restricted to
the 2D plane, which limits their usefulness for aerial robotic platforms.
While high-fidelity 3D robotics simulators exist, simulating large num-
bers of agents in these simulators can result in slower-than-real-time
performance. SCRIMMAGE provides a 3D robotics environment that
can simulate varying levels of collision detection, sensor modeling, com-
munications modeling, and motion modeling fidelity due to its flexible
plugin interface. This allows a robotics researcher to simulate hundreds
of aircraft with low-fidelity motion models or tens of aircraft with high-
fidelity motion models on single computer. SCRIMMAGE provides tools
for batch simulation runs, varying initial conditions, and deployment to
a cluster.

Keywords: simulation, swarm robotics, autonomy

1 INTRODUCTION

The high-cost of testing robotic systems in the field has led to the development
of a number of simulators for autonomous systems. A well-designed simulator al-
lows robotics researchers to debug and test their algorithms and data pipelines
in a controlled environment before deploying to a physical system where the
cost of failure is significantly higher. However, many robotics simulators have
been developed primarily for ground-based systems, with a focus on high-fidelity
multi-body physics models. This has made simulating large numbers (hundreds
or thousands) of aerial vehicles infeasible due to the computational complexity of
mesh collision detection and multi-body physics simulation. In many use cases for



2 Kevin DeMarco et al.

aerial robotics, precise collision detection and multi-body physics simulation is
not required. Thus, assumptions can be made in the plugin design that decrease
simulation time. To bridge this gap in simulation capabilities, the Simulating Col-
laborative Robots in Massive Multi-Agent Game Environment (SCRIMMAGE)
was developed. SCRIMMAGE provides a flexible simulation environment for
the experimentation and testing of novel mobile robotics algorithms. For ex-
ample, a screenshot of a predator/prey simulation in SCRIMMAGE is shown
in Fig. 1a [17]. The development of SCRIMMAGE was inspired by the Stage

(a) A screenshot of the SCRIMMAGE
visualizer during a predator/prey simu-
lation involving fixed-wing and quadro-
tor agents.

(b) A screenshot of a fixed-wing per-
forming velocity obstacle-based colli-
sion avoidance [7].

Fig. 1: SCRIMMAGE screenshots.

robotics simulator [9]. Specifically, Stage’s ability to efficiently simulate multiple
robots and its plugin interface for robotic control, motion models, and auton-
omy communication. However, Stage is inherently a two-dimensional simulator,
which limits its usefulness for aerial robotic platforms. SCRIMMAGE provides a
three-dimensional robotics environment that can simulate varying levels of sen-
sor, motion model, and network fidelity due to its flexible plugin interface. This
allows a robotics researcher to simulate hundreds of aircraft with low-fidelity
motion models or tens of aircraft with high-fidelity motion models on a stan-
dard consumer laptop. An example of using high-fidelity motion models from
the JSBSim flight dynamics simulator to test a collision avoidance maneuver is
shown in Fig. 1b. This example demonstrates some of the visualization tools
that are available through SCRIMMAGE. Also, the fact that SCRIMMAGE’s
controller deterministically executes all plugins in a lockstep-like fashion means
that the cost cloud can be visualized at each simulation time-step and analyzed
meticulously by the autonomy developer.

If a large number of simulation runs is desired, SCRIMMAGE provides tools
for cluster deployment or batch runs on a local machine. Because the space of
pertinent input variables can grow exponentially for a given simulation, SCRIM-
MAGE allows users to easily use Latin Hypercube Sampling to create a set of
mission files based on desired input ranges [8, 15]. While SCRIMMAGE has built-
in logging capability for visualization, state information, and entity interactions,
it also provides the capability to add custom data capture through a novel met-
rics plugin interface. A metric plugin can subscribe to a topic of interest, log



SCRIMMAGE 3

the data, and calculate a score both for individuals and teams. SCRIMMAGE
will then save log information to a summary csv file and calculate an overall
score by aggregating the results of individual metrics plugins. After the sim-
ulation runs are completed, SCRIMMAGE provides tools that can aggregate
the results from the simulation runs and provide statistical results. If a robotics
developer requires advanced statistical processing, the developer can leverage
SCRIMMAGE’s Python bindings, which allow the developer to directly parse
the trajectories from simulation runs.

2 RELATED WORK

The authors required a simulator that provided (1) scalability to a large num-
ber of robots for swarm applications, (2) support for the aerial domain, (3) a
minimal-effort path for simulator code to arrive on a physical system, and (4)
an open source license. Several simulators were considered for this task, and
SCRIMMAGE leverages lessons learned from the advantages and disadvantages
presented in the following existing simulation environments.

The Player/Stage Project provides an architecture to control and simulate
multiple ground-based robotic systems. However, its lack of 3D motion mod-
els makes it unusable for aerial robotics research. While Stage version 3 has
improved the degree to which swarm robotics can be scaled [25], it does not na-
tively support aerial robot flight dynamics models because it focuses on ground
robots. Similar to Stage in fidelity of simulation is the NetLogo simulator [22].
While NetLogo can be used to simulate 100’s of interacting agents, NetLogo
models are not written in C++, but NetLogo’s own programming language.
This could make deployment to physical robots cumbersome.

A simulator related to Stage, Gazebo, provides dynamic 3D multi-robotic
worlds that can be rich in complexity [13]. Gazebo’s development has been
tightly integrated with the Robot Operating System (ROS), which has led to its
widespread acceptance by the robotics community. Gazebo is capable of work-
ing with SolidWorks to provide closed kinematic chains to highly complex CAD
models [2]. However, the Gazebo simulator does not scale well when simulating
hundreds of robotic systems on a single machine due to the high-cost of precise
collision detection. Gazebo depends on a collision detection package such as the
Bullet Collision Detection library or the Open Dynamics Engine (ODE) in or-
der to operate. A major advantage of SCRIMMAGE is that it can leverage a
full collision detection library or it can utilize lower-fidelity collision detection
methods in order to meet the researcher’s needs. Similar to Gazebo in fidelity of
simulation is the V-REP robot simulator [21]. V-REP provides an open source
license for academic use, but a non open source license for companies, research
institutes, and non-profit organizations. The authors of this paper cannot use
V-REP’s open source version since they work at a research institute.

A need for a large number of aerial robots acting together in a virtual envi-
ronment led SCRIMMAGE developers to look to multi-agent based simulators.
Simulators such as MASON, FLAME, and Repast focus on agents interacting to-



4 Kevin DeMarco et al.

gether with minimal physics modeling or networking in order to simulate large
numbers of agents [14, 12, 6]. MASON, which is written in Java, seeks to be
lightweight and scalable on many architectures and provides some limited 3D
visualization. FLAME and Repast are highly scalable in that they promote par-
allelizable models that can be run in high-performance computing environments.
All of these simulators; however, are general purpose for many different domains
and not specific to robotics.

A relatively new 3D multi-robot simulator, ARGoS, was designed to simulate
large heterogeneous swarms of robots [18]. ARGoS’ novel feature is its ability
to allocate different physics engines for different spatial areas of the simulation
environment. While ARGoS has a mini-quadrotor robot model, the examples
provided are mostly of indoor ground-based systems that perform manipula-
tion tasks. The motivation for developing SCRIMMAGE was to simulate large
numbers of outdoor autonomous aerial systems.

SCRIMMAGE seeks to bridge the gap between a system such as Gazebo that
provides a rich set of high-fidelity models ready-made for a robotics context and
a multi-agent system that can model large numbers of aerial robots in a single
world. Also, SCRIMMAGE provides a way to substitute new models of varying
fidelity if users need to simulate a system that has novel needs. Furthermore,
SCRIMMAGE provides interfaces to other systems that are commonly used
in the robotics community, such as the Robot Operating System (ROS), the
Mission Oriented Operating Suite (MOOS), and OpenAI Gym [19, 16, 5]. The
SCRIMMAGE ROS Autonomy plugin matches the ROS topics and data types
that are used by the Stage simulator.

3 DESIGN GUIDELINES

SCRIMMAGE was developed following design guidelines that closely follow
those of modern open source software development as well as some novel guide-
lines for robotics simulators. The first guideline is that SCRIMMAGE simula-
tions must be deterministic. Each SCRIMMAGE world is defined in an XML
file, which is now referred to as a SCRIMMAGE mission file. This mission file
contains robot descriptions, terrain data, obstacle locations, physics engines,
etc. The mission file also contains a seed tag that is used to seed SCRIM-
MAGE’s pseudorandom number generators. SCRIMMAGE uses these pseudo-
random number generators to add noise to sensors, add noise to motion models,
and randomly place entities based on distributions. Plugins can use these same
pseudorandom number generators for decision, control, and noise generation as
well. Since all software components within SCRIMMAGE generate pseudoran-
dom numbers using the same initial seed value, given the same mission file, the
SCRIMMAGE simulation will be deterministic.

SCRIMMAGE provides the ability to run a simulation in lockstep to facili-
tate plugin development. ROS provides a useful framework for passing messages
between software components for robotic applications. However, one of the dif-
ficulties with developing with ROS is the inability to “pause” or run a debugger



SCRIMMAGE 5

in a ROS node because other asynchronous nodes in the system will continue
to process and publish data even though the node that the developer is de-
bugging has paused. Thus, a second design guideline for SCRIMMAGE was to
ensure that the entire simulation could be paused and stepped in a lockstep
fashion. This allows a plugin developer to run SCRIMMAGE in a debugger,
such as gdb, or print debug information to the terminal without affecting the
simulation results. Part of the lockstep implementation includes not using any
form of TCP/UDP network messaging in SCRIMMAGE or its plugins. However,
SCRIMMAGE does provide a simple shared-memory publish/subscribe system
that does not use the system’s networking layer to pass messages between plug-
ins. Additionally, SCRIMMAGE can provide the simulation clock to ROS, which
allows it to “step” ROS nodes.

A third design guideline for SCRIMMAGE is that motion model plugin de-
velopers should be allowed to describe their robot motion models using explicit
state transition equations of the form, ẋ = f(x, u). This is different from how mo-
tion models are described in multi-body physics simulators like ODE in Gazebo,
where a model is used to describe the transformations between the robot’s base
link, wheels, sensors, etc. While the transformation-based model description is
useful for robot manipulation tasks, it is not the canonical form used by control
engineers and mobile robot planners. This can lead to inconsistencies between a
planner’s expected model of the state transition equations and the actual motion
model’s state transition equations. This is not an issue when using planners in
SCRIMMAGE because the motion model used during simulation can be directly
used during planning, as shown in Fig. 2. In this case, an autonomy plugin cre-

Fig. 2: The resulting trajectory of a motion planner shown in white. The blue
sphere is the goal location, the red spheres are obstacles, and the rectangular
meshes are obstacles.

ates an instance of the motion model plugin and uses it during the Open Motion
Planning Library’s propagation step [23]. Since SCRIMMAGE guarantees de-
terminism and lockstep execution, it can guarantee than the planned path that
was generated with a motion model is the exact path that is followed by the
same motion model.



6 Kevin DeMarco et al.

SCRIMMAGE makes use of C++14 and open source packages such as Boost,
Eigen, GeographicLib, JSBSim, and CMake. SCRIMMAGE is hosted publicly
on GitHub5 and is distributed under the GNU Lesser General Public License
v3.0. It is the intention of the SCRIMMAGE authors for all code changes made
to the core SCRIMMAGE project to be made available to the original project.
However, third-party plugin developers can designate their own licenses for their
individual plugins. This allows individuals to retain the intellectual property
rights for their SCRIMMAGE plugins.

4 PLUGIN ARCHITECTURE

To facilitate flexibility in simulation fidelity, SCRIMMAGE implements several
plugin interfaces. A SCRIMMAGE entity is an agent in the simulation that is
composed of one or more plugins. Each entity can have multiple sensor, auton-
omy, and controller plugins, but only a single motion model plugin. The flow of
information through an entity’s plugin interfaces is shown in Fig. 3. An auton-

Fig. 3: Plugin order of execution in SCRIMMAGE.

omy plugin queries the entity’s sensors and/or the environment’s ground truth
to make a decision. The types of information that an autonomy plugin could
reason over might be the positions of other robots, obstacle detections, map
data, etc. The autonomy plugin generates a desired state, which includes po-
sition, velocity, and/or orientation information. The purpose of the controller
plugin is to consume the desired state and produce actuator commands for the
motion model plugin. Finally, the motion model plugin takes the entity’s cur-
rent state and the control outputs from the controller plugin to generate a new
state for the entity in global coordinates. SCRIMMAGE also provides a novel
communications network plugin interface. The purpose of this plugin interface
is to simulate the effects of the communications network on message transmis-
sion between entities. SCRIMMAGE provides three default network plugins: the

5 The SCRIMMAGE source code is publicly available at
https://github.com/gtri/scrimmage.



SCRIMMAGE 7

LocalNetwork for simulating messages being sent between processes on the same
physical platform, the SphereNetwork for simulating messages being sent across
a radio network, and the GlobalNetwork for the transmission of simulation-
specific messages that will always be delivered. Without a dedicated network
plugin interface, other simulators require the researcher to setup intermediate
message topics in order to simulate the effects of the network on message delivery.

Collision detection and interaction between entities is abstracted through
the entity interaction plugin interface. An entity interaction plugin can wrap
a collision detection library, such as Bullet, or it can perform simple collision
detection based on the ranges between entities, such as with SCRIMMAGE’s
SimpleCollision plugin. A complete tutorial for creating SCRIMMAGE plug-
ins is available on the official SCRIMMAGE website. 6

5 INTEGRATIONS

While SCRIMMAGE can be used in isolation to develop and test novel auton-
omy and controller algorithms, SCRIMMAGE can interface with other software
packages used by the robotics community. SCRIMMAGE has utilities and plu-
gins that interface with ROS, MOOS, and OpenAI Gym [19, 16, 5].

5.1 ROS

There are two methods of interfacing SCRIMMAGE with ROS. The first method
uses SCRIMMAGE utilities to abstractly construct publishers, subscribers, and
services, such that the plugin uses SCRIMMAGE’s API when being simulated
in SCRIMMAGE or the plugin uses ROS’ API when being executed in a ROS
node. The second method emulates the Stage simulator’s ROS API, which allows
SCRIMMAGE to be a drop-in replacement for Stage when working with the ROS
2D navigation stack.

After writing and verifying algorithms in simulation it is a simple step to
integrate with ROS as fundamental concepts in the latter map directly to the
former. In particular, ROS nodes map to SCRIMMAGE plugins, ROS services
are functions provided by one plugin and called by another, and ROS pub-
lishers/subscribers map to SCRIMMAGE network devices. Similar to the ROS
interface, data is loosely coupled in the form of a publish-subscribe system.

SCRIMMAGE also has the ability to emulate Stage’s interface to ROS through
the ROSAutonomy plugin. The ROSAutonomy plugin publishes sensor information
to ROS over the odom and base scan topics and it accepts commanded veloci-
ties over the cmd vel topic. SCRIMMAGE can convert the same maps used by
Stage to 3D wall barriers and uses the Bullet Physics Engine’s ray tracing fea-
ture to simulate a LIDAR sensor. A screenshot of two simulated ground robots
in SCRIMMAGE being controlled by the ROS 2D navigation stack is shown in
Fig. 4a.

6 The SCRIMMAGE website is located at http://www.scrimmagesim.org.



8 Kevin DeMarco et al.

(a) A screenshot of the SCRIMMAGE
3D viewer while interfacing with the
ROS 2D navigation stack. The red lines
represent LIDAR detections.

(b) A screenshot of the ROS 2D navi-
gation stack running in RVIZ.

Fig. 4: SCRIMMAGE / ROS Screenshots.

5.2 MOOS

The Mission Oriented Operating Suite (MOOS) is a publish-and-subscribe sys-
tem for robotic platforms and MOOS-IvP (MOOS Interval Programming) is an
autonomy behavior fusion engine that is commonly used on autonomous mar-
itime vessels [16, 4]. SCRIMMAGE’s MOOSAutonomy plugin converts the SCRIM-
MAGE entities into the appropriate MOOS data structure and publishes them
to the MOOS community. MOOS-IvP then generates a desired heading and a
desired speed and publishes them to the MOOSAutonomy plugin.

5.3 OpenAI Gym

SCRIMMAGE provides an OpenAI Gym environment to support evaluation of
reinforcement learning algorithms [24]. The user can select from already created
environments by changing a few lines in a mission file or they can create their
own. The gym environment interacts with scrimmage through pybind11’s [11]
embedded python library. Users can customize their environment by specifying
action and observation spaces to be continuous, discrete, or combinations thereof.
Further, as SCRIMMAGE is designed to be a multi-agent simulator, users can
run environments with multiple learning agents.

6 PREDATOR/PREY SIMULATION USE CASE

To demonstrate the development and analysis processes when working with
SCRIMMAGE, a simulation of two groups of predators trying to capture prey
in a swarm was developed. In this experiment, the two groups of predators will
be competing against each other in a game to determine which predator group
can capture the most prey. The two predator groups will be different in how
each group selects prey to pursue for capture. SCRIMMAGE will be used to
organize the game experiment, simulate 1000 runs of the games, compute game
scores, and aggregate the game results in a batch process. In previous work, the
authors attempted to simulate 10’s of aircraft in a similar scenario using Gazebo
and were unsuccessful in running the simulation faster-than-real-time.



SCRIMMAGE 9

6.1 SCRIMMAGE Mission Setup

A SCRIMMAGE simulation, or mission, is defined in an XML file, which contains
the information necessary to run the simulation. The XML file defines parame-
ters needed to control the timing of the simulation such as the simulation step
size, real-time warp factor, simulation end time, simulation end conditions, etc.
The XML file also specifies the types of entities that will be instantiated during
the simulation and the plugins that will be associated with each entity. Since
SCRIMMAGE was designed with swarm-based simulations in mind, an entity
can be a single robot or a single XML entity block can spawn a large number of
agents. For the Predator/Prey simulation, there will be three swarm entities: a
swarm of prey (Team 1), a swarm of predators (Team 2), and a second swarm of
predators (Team 3). The motion model for each agent in the simulation will be a
modified unicycle model. The prey will execute a modified Boids flocking behav-
ior [20], while the predators will execute two different greedy capture behaviors.
All behaviors were implemented as SCRIMMAGE autonomy plugins. A preda-
tor “captures” a prey by publishing a CaptureEntity message when it is within
a distance threshold of the prey. The prey are only acting on the ground truth
state information of other entities in the simulation. After a predator publishes a
CaptureEntity message, the SimpleCapture entity interaction plugin receives
the message, computes the distance between the predator and the prey it is try-
ing to catch, and it determines whether the capture is successful. If the capture
is successful, the SimpleCapture entity interaction plugin has the authority to
modify the state of the prey, modify the health of the prey, or remove the cap-
tured prey from the simulation. The SimpleCapture plugin will also publish a
NonTeamCapture message, which will be received by the SimpleCaptureMetrics
metrics plugin, so that the team score can be calculated.

6.2 Entity Motion Models

SCRIMMAGE provides a number of motion models that can be used with most
autonomy plugins: simple car, simple aircraft, double integrator, single integra-
tor, high-fidelity JSBSim model, etc. The Boids flocking model demonstrates
the desired performance when using motion models that are similar to unicycle
dynamics. However, since we wish to demonstrate SCRIMMAGE’s 3D capabili-
ties, we extended the 2D unicycle model to a 3D version by adding pitch to the
unicycle state, as shown in (1).

ẋ = us cos(ψ) cos(θ)

ẏ = us cos(ψ) sin(θ)

ż = us sin(ψ) (1)

θ̇ = uω

ψ̇ = uφ



10 Kevin DeMarco et al.

The 3D unicycle state consists of a 3D position, (x, y, z), its heading, θ, and its
pitch, ψ. Inputs to the motion model are the forward speed, us, yaw rate, uω,
and pitch rate, uφ. Not shown in (1) are the limits on pitch rate and yaw rate.

6.3 Predator Autonomy Model

The predator behavior can be decomposed into two primary tasks: selecting the
prey to capture and constructing a trajectory to capture the prey. In differential
game theory, it has been shown that a pure pursuit strategy in pursuer/evader
games is the optimal strategy for the pursuer [10]. Thus, the pure pursuit strategy
was used to construct a trajectory to capture the prey. To compute the control
inputs required to achieve pure pursuit, the predator first computes the desired
velocity vector normalized by its maximum speed, smax, pointing from its own
position, pown, to the prey’s position, pprey.

v = smax
pprey − pown
‖pprey − pown‖

(2)

The desired heading, θd, and desired pitch, ψd, can be computed with (3).

θd = tan−1

(
vy
vx

)
(3)

ψd = tan−1

 vz√
v2
x + v2

y


Finally, these desired orientations can be converted into control inputs by setting
the desired speed to the maximum speed and implementing simple proportional
controllers.

How a predator should select the prey is less obvious than how it should
construct its capture trajectory. A greedy strategy will first be employed, where
the predator selects the prey based on a distance metric. The predator will se-
lect the prey that is closest to it in 3D space. How often the predator chooses
its next prey also has to be determined. Should the predator select the closest
prey at every decision time-step or should it select a prey one time and pursue
the prey until it has been captured? This is the question that this SCRIM-
MAGE simulation will answer in a statistical fashion. One team of predators
(Team 2) will perform a one-time selection of its prey and the other group of
predators (Team 3) will be allowed to select the closest prey at every decision
time-step. The predator’s autonomy plugin was parameterized with a boolean
variable called allow prey switching that switches the selection behavior of
the predator, which facilitates running the same plugin with different parame-
ters in the same simulation. It is hypothesized that the predator team that is
allowed to switch prey will capture more prey because the predators will be able
to opportunistically catch prey that happen to fly nearby.



SCRIMMAGE 11

6.4 Prey Autonomy Model

The prey’s behavior is a combination of the Boids flocking model and motor
schemas [1]. Similar to the traditional Boids model, each prey agent implements
separation, alignment, and cohesion behaviors. The prey agents also implement
go-to-waypoint and avoid non-team agent behaviors. The behaviors for avoiding
other prey and predators both use the motor schemas formulation for collision
avoidance. The avoidance behavior is parameterized by a sphere of influence, S,
a minimum distance, dmin, the distance between the prey and the other entity,
d, and a behavior gain or weight, wo. The direction of the avoidance vector
extends from the other entity towards the prey’s own position. The magnitude
of the avoidance vector, O, is defined in (4).

‖O‖ =


0 d > S
S−d

S−dmin
∗ wo dmin < d ≤ S

∞ d ≤ dmin
(4)

The collision avoidance behavior that keeps the prey away from predators has a
larger value for dmin than the behavior that keeps prey away from other prey.
However, both behaviors have the same values for S. Likewise, the weight for the
predator collision avoidance behavior is larger than the other behavior weights.
The SCRIMMAGE plugin interface provides the plugin developer with an R-tree
data structure for fast computation of nearest neighbors, which simulates com-
municating state information based on a maximum range [3]. The generation of
the R-tree is more computationally expensive than a single nearest neighbors
search, but queries on the R-tree are more efficient than a nearest neighbors
search. The SCRIMMAGE simulation controller computes a single R-tree in-
stance for all agents at each time-step, which is more efficient than each agent
executing its own nearest neighbors search.

6.5 Predator/Prey Results

The predator/prey simulation was run 1000 times. The maximum simulation
time for each simulation run was 500 seconds. There were 100 prey, five predators
in Team 2, and five predators in Team 3. The predators that did not switch
which prey they were trying to capture after the initial selection process (Team
2) outperformed the predators that could switch prey at each decision time-step
(Team 3). Team 2 captured more prey in 593 out of the 1000 runs. Team 3
captured more prey in 361 runs. In 46 simulation runs, the two teams tied in the
number of captured prey. A screenshot of the SCRIMMAGE visualizer during
one of the predator/prey scenarios is shown in Fig. 5. The flight paths of the
prey in the front of the flock are being disrupted by two predators that have
penetrated the flock. However, the prey at the back of the flock are remaining
in formation because the predators have not yet penetrated their spheres of
influence. The number of prey in the predator/prey simulation was also varied
to test how the time to execute the simulation varies as the number of entities



12 Kevin DeMarco et al.

Fig. 5: A screenshot of the SCRIMMAGE visualizer during the predator/prey
simulation. The prey are represented by blue aircraft and the predators are
represented as red aircraft.

varies. Table 1 shows the ratio of simulation to actual time for running the
predator / prey simulation as a function of the number of total agents in the
simulation for three motion model plugins of increasing fidelity.

Entity Count Single Integrator Unicycle JSBSim

200 49.6 41.3 1.1
500 13.3 12.2 0.4
800 6.9 5.9 0.2
1100 4.3 3.5 0.2
1400 2.9 2.4 0.1
1700 2.1 1.7 0.1
2000 1.5 1.3 0.1

Table 1: The ratio of simulation time to wall time in a predator-prey scenario
for varying levels of motion model fidelity and number of entities. Data was
computed using an i7-4790 CPU running at 3.6 GHz using a single thread. Wall
time is how long it takes a computer to run a program.

6.6 Predator/Prey Discussion

The hypothesis that the predator team that was allowed to switch pursued prey
at each decision time-step would capture more prey than the predator team that
was not allowed to switch was incorrect. By reviewing the playbacks of the sim-
ulation runs it was obvious that the predators that were allowed to switch were
often distracted by nearby prey as they were closing in on a prey that would
have been caught. In future work, the prey selection criteria could be improved
to move past a distance metric to capture the dynamics of the moving entities.
However, this predator/prey simulation in SCRIMMAGE provides a useful tu-
torial for how to use SCRIMMAGE to conduct robot behavior experiments in a
probabilistic fashion.



SCRIMMAGE 13

The results in Table 1 indicate that using a unicycle model does not signif-
icantly reduce run-time while moving to a six degrees-of-freedom model with
JSBSim significantly reduces run-time. These results highlight the importance
of being able to scale the fidelity of motion model plugins to allow the researcher
to focus on the aspect of the simulation that is of most concern.

7 CONCLUSION

A motivating example for the use of SCRIMMAGE in simulating large num-
bers of autonomous agents was presented in the form of a predator/prey game.
SCRIMMAGE was originally developed due to the lack of open source, com-
putationally efficient, multi-agent, aerial robot simulators. SCRIMMAGE was
also designed with batch processing in mind; thus, its plugin architecture can
compute metrics and aggregate results across large batches of simulations. This
allows SCRIMMAGE to be used as a platform for experimentation, comparing
robot behaviors, and comparing swarm strategies. SCRIMMAGE provides plu-
gin interfaces for ROS, MOOS, and OpenAI. In future work, SCRIMMAGE will
be leveraged for multi-agent deep learning due to its low computational over-
head and its OpenAI interface. SCRIMMAGE will continue to improve as it is
used on more research programs and its open source nature allows the robotics
community to provide feedback.

References

1. Arkin, R.: Motor schema based navigation for a mobile robot: An approach to
programming by behavior. In: Robotics and Automation. Proceedings. 1987 IEEE
International Conference on. vol. 4, pp. 264–271. IEEE (1987)

2. Bailey, M., Gebis, K., Zefran, M.: Simulation of Closed Kinematic Chains in Real-
istic Environments Using Gazebo. Springer International Publishing, Cham (2016)

3. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: an efficient and
robust access method for points and rectangles. In: Acm Sigmod Record. vol. 19,
pp. 322–331. Acm (1990)

4. Benjamin, M.R., Leonard, J.J., Schmidt, H., Newman, P.M.: An overview of moos-
ivp and a brief users guide to the ivp helm autonomy software (2009)

5. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI gym. arXiv preprint arXiv:1606.01540 (2016)

6. Collier, N.: Repast: An extensible framework for agent simulation. The University
of Chicagos Social Science Research 36, 2003 (2003)

7. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity
obstacles. The International Journal of Robotics Research 17(7), 760–772 (1998)

8. Forrester, A., Keane, A., et al.: Engineering design via surrogate modelling: a
practical guide. John Wiley & Sons (2008)

9. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-
robot and distributed sensor systems. In: Proceedings of the 11th international
conference on advanced robotics. vol. 1, pp. 317–323 (2003)

10. Isaacs, R.: Differential Games: A Mathematical Theory with Applications to War-
fare and Pursuit, Control and Optimization, vol. 1. Dover Publications, Inc. (1965)



14 Kevin DeMarco et al.

11. Jakob, W., Rhinelander, J., Moldovan, D.: pybind11 – seamless operability between
c++11 and python (2017), https://github.com/pybind/pybind11

12. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.:
Flame: simulating large populations of agents on parallel hardware architectures.
In: Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1. pp. 1633–1636. International Foundation
for Autonomous Agents and Multiagent Systems (2010)

13. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Intelligent Robots and Systems, 2004.(IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on. vol. 3, pp. 2149–2154. IEEE
(2004)

14. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-
agent simulation environment. Simulation 81(7), 517–527 (2005)

15. Martinez, J.M., Collette, Y., Baudin, M., Christopoulou, M., Baudin, M., et al.: py-
DOE: The experimental design package for Python (2009–), https://pythonhosted.
org/pyDOE/, [Online; accessed 2017-09-07]

16. Newman, P., MOOS, A.: A mission oriented operating suite. Tech. rep., Technical
Report OE2007-07. MIT Department of Ocean Engineering (2003)

17. Nishimura, S.I., Ikegami, T.: Emergence of collective strategies in a prey-predator
game model. Artificial Life 3(4), 243–260 (1997)

18. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Di Caro, G., Ducatelle, F., et al.: ARGoS: a modular, multi-
engine simulator for heterogeneous swarm robotics. In: Intelligent Robots and Sys-
tems (IROS), 2011 IEEE/RSJ International Conference on. pp. 5027–5034. IEEE
(2011)

19. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA workshop on
open source software. vol. 3, p. 5. Kobe (2009)

20. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM
SIGGRAPH computer graphics 21(4), 25–34 (1987)

21. Rohmer, E., Singh, S.P., Freese, M.: V-rep: A versatile and scalable robot sim-
ulation framework. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. pp. 1321–1326. IEEE (2013)

22. Sklar, E.: Netlogo, a multi-agent simulation environment (2007)
23. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE

Robotics & Automation Magazine 19(4), 72–82 (December 2012), http://ompl.
kavrakilab.org

24. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT
press Cambridge (1998)

25. Vaughan, R.: Massively multi-robot simulation in stage. Swarm intelligence 2(2),
189–208 (2008)


